Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition.

نویسندگان

  • D A Judd
  • J H Nettles
  • N Nevins
  • J P Snyder
  • D C Liotta
  • J Tang
  • J Ermolieff
  • R F Schinazi
  • C L Hill
چکیده

Nb-containing polyoxometalates (POMs) of the Wells-Dawson class inhibit HIV-1 protease (HIV-1P) by a new mode based on kinetics, binding, and molecular modeling studies. Reaction of alpha(1)-K(9)Li[P(2)W(17)O(61)] or alpha(2)-K(10)[P(2)W(17)O(61)] with aqueous H(2)O(2) solutions of K(7)H[Nb(6)O(19)] followed by treatment with HCl and KCl and then crystallization affords the complexes alpha(1)-K(7)[P(2)W(17)(NbO(2))O(61)] (alpha(1)()1) and alpha(2)-K(7)[P(2)W(17)(NbO(2))O(61)] (alpha(2)()1) in 63 and 86% isolated yields, respectively. Thermolysis of the crude peroxoniobium compounds (72-96 h in refluxing H(2)O) prior to treatment with KCl converts the peroxoniobium compounds to the corresponding polyoxometalates (POMs), alpha(1)-K(7)[P(2)W(17)NbO(62)] (alpha(1)()2) and alpha(2)-K(7)[P(2)W(17)NbO(62)] (alpha(2)()2), in moderate yields (66 and 52%, respectively). The identity and high purity of all four compounds were confirmed by (31)P NMR and (183)W NMR. The acid-induced dimerization of the oxo complexes differentiates sterically between the cap (alpha(2)) site and the belt (alpha(1)) site in the Wells-Dawson structure (alpha(2)()2 dimerizes in high yield; alpha(1)()2 does not). All four POMs exhibit high activity in cell culture against HIV-1 (EC(50) values of 0.17-0.83 microM), are minimally toxic (IC(50) values of 50 to >100 microM), and selectively inhibit purified HIV-1 protease (HIV-1P) (IC(50) values for alpha(1)()1, alpha(2)()1, alpha(1)()2, and alpha(2)()2 of 2.0, 1.2, 1.5, and 1.8 microM, respectively). Thus, theoretical, binding, and kinetics studies of the POM/HIV-1P interaction(s) were conducted. Parameters for [P(2)W(17)NbO(62)](7)(-) were determined for the Kollman all-atom (KAA) force field in Sybyl 6.2. Charges for the POM were obtained from natural population analysis (NPA) at the HF/LANL2DZ level of theory. AutoDock 2.2 was used to explore possible binding locations for the POM with HIV-1P. These computational studies strongly suggest that the POMs function not by binding to the active site of HIV-1P, the mode of inhibition of all other HIV-1P protease inhibitors, but by binding to a cationic pocket on the "hinge" region of the flaps covering the active site (2 POMs and cationic pockets per active homodimer of HIV-1P). The kinetics and binding studies, conducted after the molecular modeling, are both in remarkable agreement with the modeling results: 2 POMs bind per HIV-1P homodimer with high affinities (K(i) = 1.1 +/- 0.5 and 4.1 +/- 1.8 nM in 0.1 and 1.0 M NaCl, respectively) and inhibition is noncompetitive (k(cat) but not K(m) is affected by the POM concentration).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of new potent HTLV-1 protease inhibitors: in silico study

HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...

متن کامل

Screening Efficacy of Available HIV Protease Inhibitors on COVID-19 Protease

Background and Aim: Advent of COVID-19 attracted the attentions of researchers to develop drugs for its treatment. Besides efforts on developing new drugs, screening available drugs for efficacy on COVID-19 could be an urgent action of initiating its pharmacotherapy. In this study, efficacy of HIV protease inhibitors on COVID-19 protease has been examined. Methods: Molecular docking based scree...

متن کامل

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

THE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL

Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...

متن کامل

A QSAR Study of HIV Protease Inhibitors Using Computational Descriptors to Prediction of pki of Cycle Derivatives of Urea

Preventing and reducing the spread of HIV (HIV) has always been a concern in medical science. One of the most common ways to control the virus is using enzyme-blocking drugs. In this study, we attempted to predict the biological activity (PKi) of organic urea derivatives in protease inhibitor compounds using molecular modeling using QSAR (Quantitative Structure Activity Relation), which is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 123 5  شماره 

صفحات  -

تاریخ انتشار 2001